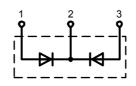
LIXYS

DHG 20 C 600QB

advanced

Sonic-FRD


High Performance Fast Recovery Diode Low Loss and Soft Recovery Common Cathode

Part number (Marking on product)

DHG 20 C 600QB

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
 Avalanche voltage rated for reliable
- operationSoft reverse recovery for low EMI/RFI
- Low Irm reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

 $V_{RRM} = 600 V$ $I_{FAV} = 2x 10 A$ $t_{rr} = 35 ns$

Package:

- TO-3P
- Industry standard outline
- compatible with TO-247
- Epoxy meets UL 94V-0RoHS compliant
- RUHS CUMPIIAN

				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RRM}	max. repetitive reverse voltage		T _{vj} = 25 °C			600	V
I _R	reverse current	V _R = 600 V	T _{vJ} = 25 °C			15	μA
		V _R = 600 V	T _{vJ} = 125 °C			1.5	mA
V _F	forward voltage	I _F = 10 A	T _{vJ} = 25 °C			2.35	V
		I _F = 20 A					V
		I _F = 10 A	T _{v.} = 125 °C			2.20	V
		I _F = 20 A					V
I _{FAV}	average forward current	rectangular, d = 0.5	T _c = 100 °C			10	Α
V _{F0}	threshold voltage } for power loss calculation only		T _{vJ} = 150 °C			1.20	V
r _F	slope resistance $\int for power loss$	calculation only				93	mΩ
R_{thJC}	thermal resistance junction to case					1.80	K/W
T _{vj}	virtual junction temperature			-55		150	°C
P _{tot}	total power dissipation		$T_c = 25 °C$			70	W
IFSM	max. forward surge current	t_p = 10 ms (50 Hz), sine	$T_{vJ} = 45 °C$			100	А
I RM	max. reverse recovery current	$I_{\rm F} = 10 {\rm A};$	T _{vJ} = 25 °C		4		А
t "	reverse recovery time		T _{vJ} = 125 °C				Α
		$-di_{\rm F}/dt = 200 \text{A}/\mu\text{s}$	T _{vJ} = 25 °C		35		ns
		V _R = 400 V	T _{vJ} = 125 °C				ns
C	junction capacitance	V_{R} = 300 V; f = 1 MHz	T _{vJ} = 25 °C				pF
E _{AS}	non-repetitive avalanche energy	I _{AS} = A; L = 100 μH	T _{vJ} = 25 °C			tbd	mJ
I _{AR}	repetitive avalanche current	$V_{A} = 1.5 \cdot V_{R}$ typ.; f = 10 kHz				tbd	А

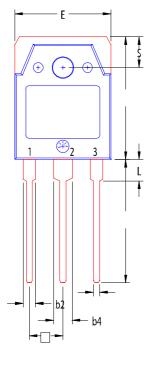
XYS

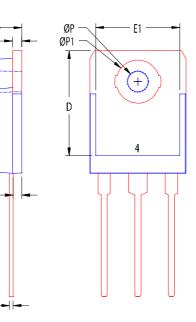
DHG 20 C 600QB

advanced

				Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit	
I _{RMS}	RMS current	per pin*				Α	
R_{thCH}	thermal resistance case to h	eatsink		0.25		K/W	
M _D	mounting torque		0.8		1.2	Nm	
F _c	mounting force with clip		20		120	Ν	
T _{stg}	storage temperature		-55		150	°C	
Weight				5		g	

* Irms is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip.


A


А

С

In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Outlines TO-3P

SYM	INCHES		MILLIMETERS		
51101	MIN	MAX	MIN	MAX	
А	.185	.193	4.70	4.90	
A1	.051	.059	1.30	1.50	
A2	.057	.065	1.45	1.65	
b	.035	.045	0.90	1.15	
b2	.075	.087	1.90	2.20	
b4	.114	.126	2.90	3.20	
с	.022	.031	0.55	0.80	
D	.780	.791	19.80	20.10	
D1	.665	.6 77	16.90	17.20	
Е	.610	.622	15.50	15.80	
E1	.531	.539	13.50	13.70	
e	.215	BSC	5.45 BSC		
L	.779	.795	19.80	20.20	
L1	.134	.142	3.40	3.60	
ØP	.126	.134	3.20	3.40	
ØP1	.272	.280	6.90	7.10	
S	.193	.201	4.90	5.10	

All metal area are tin plated.

- 1 GATE 2 - DRAIN (COLLECTOR)
- 3 SOURCE (EMITTER)
- 4 DRAIN (COLLECTOR)